37 research outputs found

    Chapter Emerging Techniques for Assessment of Sensorimotor Impairments after Spinal Cord Injury

    Get PDF
    Mechanical properties of the plantar soft tissue, which acts as the interface between the skeleton and the ground, play an important role in distributing the force underneath the foot and in influencing the load transfer to the entire body during weight-bearing activities. Hence, understanding the mechanical behaviour of the plantar soft tissue and the mathematical equations that govern such behaviour can have important applications in investigating the effect of disease and injuries on soft tissue function. The plantar soft tissue of the foot shows a viscoelastic behaviour, where the reaction force is not only dependent on the amount of deformation but also influenced by the deformation rate. This chapter provides an insight into the mechanical behaviour of plantar soft tissue during loading with specific emphasis on heel pad, which is the first point of contact during normal gait. Furthermore, the methods of assessing the mechanical behaviour including the in vitro/in situ and in vivo are discussed, and examples of creep, stress relaxation, rate dependency and hysteresis behaviour of the heel pad are shown. In addition, the viscoelastic models that represent the mechanical behaviour of the plantar soft tissue under load along with the equations that govern this behaviour are elaborated and discussed

    Noninvasive Modalities Used in Spinal Cord Injury Rehabilitation

    Get PDF
    In the past three decades, research on plasticity after spinal cord injury (SCI) has led to a gradual shift in SCI rehabilitation: the former focus on learning compensatory strategies changed to functional neurorecovery, that is, promoting restoration of function through the use of affected limbs. This paradigm shift contributed to the development of technology-based interventions aiming to promote neurorecovery through repetitive training. This chapter presents an overview of a range of noninvasive modalities that have been used in rehabilitation after SCI. Among others, we present repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), surface electrical stimulation tools such as transcutaneous electrical spinal cord stimulation (tcSCS), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES), as well as its integration with cycling training and assistive robotic devices. The most recent results attained and the potential relevance of these new techniques to strengthen the efficacy of the residual neuronal pathways and improve spasticity are also presented. Future efforts toward the widespread clinical application of these modalities include more advances in the technology, together with the knowledge obtained from basic research and clinical trials. This can ultimately lead to novel customized interventions that meet specific needs of SCI patients

    Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients

    Get PDF
    Objective: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling. Methods: Four healthy subjects and three incomplete spinal cord injury (SCI) patients performed walking trials at varying speeds. Motion capture marker trajectories, surface and intramuscular EMG, and ground reaction forces were measured concurrently. Subject-specific musculoskeletal models were developed for all subjects, and inverse dynamics analysis was performed for all individual trials. EMG-driven modelling based joint torque estimates were obtained from surface and intramuscular EMG. Results: The correlation between the experimental and predicted joint torques was similar when using intramuscular or surface EMG as input to the EMG-driven modelling estimator in both healthy individuals and patients. Conclusion: We have provided the first comparison of non-invasive and implanted EMG sensors as input signals for torque estimates in healthy individuals and SCI patients. Significance: Implanted EMG sensors have the potential to be used as a reliable input for assistive exoskeleton joint torque actuation.The authors would like to thank Enrique Pérez Rizo, Natalia Comino Suárez and María Isabel Sinovas Alonso for their assistance on the experimental and data acquisition procedure

    Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks

    Get PDF
    Previous implementations of closed-loop peripheral electrical stimulation (PES) strategies have provided evidence about the effect of the stimulation timing on tremor reduction. However, these strategies have used traditional signal processing techniques that only consider phase prediction and might not model the non-stationary behavior of tremor. Here, we tested the use of long short-term memory (LSTM) neural networks to predict tremor signals using kinematic data recorded from Essential Tremor (ET) patients. A dataset comprising wrist flexion-extension data from 12 ET patients was pre-processed to feed the predictors. A total of 180 models resulting from the combination of network (neurons and layers of the LSTM networks, length of the input sequence and prediction horizon) and training parameters (learning rate) were trained, validated and tested. Predicted tremor signals using LSTM-based models presented high correlation values (from 0.709 to 0.998) with the expected values, with a phase delay between the predicted and real signals below 15 ms, which corresponds approximately to 7.5% of a tremor cycle. The prediction horizon was the parameter with a higher impact on the prediction performance. The proposed LSTM-based models were capable of predicting both phase and amplitude of tremor signals outperforming results from previous studies (32 - 56% decreased phase prediction error compared to the out-of-phase method), which might provide a more robust PES-based closed-loop control applied to PES-based tremor reduction.The authors would like to thank Cristina Montero Pardo for illustrations from Fig. 1 and the patients from Gregorio Marañón Hospital who voluntarily participated in this study

    Intramuscular EMG-driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients

    Get PDF
    Objective: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling. Methods: Four healthy subjects and three incomplete spinal cord injury (SCI) patients performed walking trials at varying speeds. Motion capture marker trajectories, surface and intramuscular EMG, and ground reaction forces were measured concurrently. Subject-specific musculoskeletal models were developed for all subjects, and inverse dynamics analysis was performed for all individual trials. EMG-driven modelling based joint torque estimates were obtained from surface and intramuscular EMG. Results: The correlation between the experimental and predicted joint torques was similar when using intramuscular or surface EMG as input to the EMG-driven modelling estimator in both healthy individuals and patients. Conclusion: We have provided the first comparison of non-invasive and implanted EMG sensors as input signals for torque estimates in healthy individuals and SCI patients. Significance: Implanted EMG sensors have the potential to be used as a reliable input for assistive exoskeleton joint torque actuation

    Intramuscular Stimulation of Muscle Afferents Attains Prolonged Tremor Reduction in Essential Tremor Patients

    Get PDF
    This study proposes and clinically tests intramuscular electrical stimulation below motor threshold to achieve prolonged reduction of wrist flexion/extension tremor in Essential Tremor (ET) patients. The developed system consisted of an intramuscular thin-film electrode structure that included both stimulation and electromyography (EMG) recording electrodes, and a control algorithm for the timing of intramuscular stimulation based on EMG (closed-loop stimulation). Data were recorded from nine ET patients with wrist flexion/extension tremor recruited from the Gregorio Mara\uf1\uf3n Hospital (Madrid, Spain). Patients participated in two experimental sessions comprising: 1) sensory stimulation of wrist flexors/extensors via thin-film multichannel intramuscular electrodes; and 2) surface stimulation of the nerves innervating the same target muscles. For each session, four of these patients underwent random 60-s trials of two stimulation strategies for each target muscle: 1) selective and adaptive timely stimulation (SATS) - based on EMG of the antagonist muscle; and 2) continuous stimulation (CON) of target muscles. Two patients underwent SATS stimulation trials alone while the other three underwent CON stimulation trials alone in each session. Kinematics of wrist, elbow, and shoulder, together with clinical scales, were used to assess tremor before, right after, and 24 h after each session. Intramuscular SATS achieved, on average, 32% acute (during stimulation) tremor reduction on each trial, while continuous stimulation augmented tremorgenic activity. Furthermore, tremor reduction was significantly higher using intramuscular than surface stimulation. Prolonged reduction of tremor amplitude (24 h after the experiment) was observed in four patients. These results showed acute and prolonged (24 h) tremor reduction using a minimally invasive neurostimulation technology based on SATS of primary sensory afferents of wrist muscles. This strategy might open the possibility of an alternative therapeutic approach for ET patients

    Muscle synergies in cycling after incomplete spinal cord injury: correlation with clinical measures of motor function and spasticity

    Get PDF
    Background: After incomplete spinal cord injury (iSCI), patients suffer important sensorimotor impairments, such as abnormal locomotion patterns and spasticity. Complementary to current clinical diagnostic procedures, the analysis of muscle synergies has emerged as a promising tool to study muscle coordination, which plays a major role in the control of multi-limb functional movements.Objective: Based on recent findings suggesting that walking and cycling share similar synergistic control, the analysis of muscle synergies during cycling might be explored as an early descriptor of gait-related impaired control. This idea was split into the following two hypotheses: (a) iSCI patients present a synergistic control of muscles during cycling; (b) muscle synergies outcomes extracted during cycling correlate with clinical measurements of gait performance and/or spasticity.Methods: Electromyographic (EMG) activity of 13 unilateral lower limb muscles was recorded in a group of 10 healthy individuals and 10 iSCI subjects during cycling at four different cadences. A non-negative matrix factorization (NNMF) algorithm was applied to identify synergistic components (i.e., activation coefficients and muscle synergy vectors). Reconstruction goodness scores (VAF and r(2)) were used to evaluate the ability of a given number of synergies to reconstruct the EMG signals. A set of metrics based on the similarity between pathologic and healthy synergies were correlated with clinical scales of gait performance and spasticity.Results: iSCI patients preserved a synergistic control of muscles during cycling. The similarity with the healthy reference was consistent with the degree of the impairment, i.e., less impaired patients showed higher similarities with the healthy reference. There was a strong correlation between reconstruction goodness scores at 42 rpm and motor performance scales (TUG, 10-m test and WISCI II). On the other hand, the similarity between the healthy and affected synergies presented correlation with some spasticity symThis study was funded by the Spanish Ministry for Science and Innovation, in the framework of the project HYPER (CONSOLIDER-INGENIO 2010) "Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders" (Ref. CSD2009-00067) and the Spanish project ASSOCIATE (Ref. DPI2014-58431-C4-1-R).info:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore